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Abstract

We develop PIRCh-seq, a method which enables a comprehensive survey of chromatin-associated RNAs in a
histone modification-specific manner. We identify hundreds of chromatin-associated RNAs in several cell types with
substantially less contamination by nascent transcripts. Non-coding RNAs are found enriched on chromatin and are
classified into functional groups based on the patterns of their association with specific histone modifications. We
find single-stranded RNA bases are more chromatin-associated, and we discover hundreds of allele-specific RNA-
chromatin interactions. These results provide a unique resource to globally study the functions of chromatin-
associated lncRNAs and elucidate the basic mechanisms of chromatin-RNA interactions.

Introduction
RNAs are both the product of transcription and major
regulators of the transcriptional process. In particular,
long non-coding RNAs (lncRNAs) are numerous in eu-
karyotes and function in many cases as transcription regu-
lators [1–3]. With the development of next-generation
sequencing (NGS), tens of thousands of lncRNAs have
been revealed in both murine and human genomes, and
have emerged as important regulators for different bio-
logical processes [4, 5]. However, among all expressed
lncRNAs, only a small subset are shown to be cell essen-
tial [6] or important for development [7] or immune re-
sponses [8]. Strategies to annotate biochemical properties
of lncRNAs will be helpful to prioritize lncRNA candi-
dates for functional analyses. Some well-studied cases
have indicated that one major mechanism of lncRNAs is

their ability to function through binding to histone-
modifying complexes [9, 10]. LncRNAs can either recruit
chromatin modifiers to regulate the chromatin states or
directly regulate the process of transcription through
chromosome looping to bridge distal enhancer elements
to promoters [11, 12]. Thereby, a genome-wide identifica-
tion of chromatin-associated lncRNAs may reveal func-
tions and mechanisms of lncRNAs in mediating
chromatin modification and regulating gene transcription.
A considerable amount of literature has been pub-

lished concerning protein-RNA interactions. The advent
of technologies such as RIP [13], CLIP [14], fRIP [15],
and CARIP [16] has led to the discovery of multiple
protein-associated RNAs, including many chromatin
regulators. Conversely, nuclear extraction methods
followed by RNA-seq have enabled the detection of
lncRNAs which are physically associated with chromatin
[17–19]. In addition, more recently reported methods
like GRID-seq [20], MARGI [21], and SPRITE [22] can
be used to capture pairwise RNA interactions with
DNA. However, these approaches are not capable of re-
vealing which chromatin modifications are associated
with specific lncRNAs and are thus limited in the ability
to elucidate their potential regulatory functions. For in-
stance, a large number of lncRNAs are associated with
Polycomb Repressive Complex 2 (PRC2), a key
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mammalian epigenetic regulator, to silence gene transcrip-
tion by targeting its genomic loci and trimethylating histone
H3 lysine 27 (H3K27me3) [23]. Therefore, lncRNAs associ-
ated with PRC2 complex may be enriched on heterochro-
matin regions with H3K27me3 modification. On the other
hand, a new class of lncRNAs called super-lncRNAs was
recently characterized. These lncRNAs target super-
enhancers which have potential to regulate enhancer activ-
ities and transcription [24]. These super-lncRNAs may be
enriched on euchromatin and active DNA regulatory ele-
ments with histone H3 lysine 27 acetylation (H3K27ac), H3
lysine 4 monomethylation (H3K4me1), and trimethylation
(H3K4me3). Therefore, we believe it will be helpful to de-
velop an experimental technology to distinguish different
histone modification-associated lncRNAs, as well as
analytical approaches to classify them and predict lncRNA
functions based on their chromatin association patterns.
Another technical challenge in studying chromatin-
associated lncRNAs is avoiding interference from abundant
nascent transcripts on chromatin. For example, results from
GRID-seq [20] or MARGI [21], approaches recently devel-
oped to identify in situ global RNA interactions with DNA,
contain significant amounts of nascent transcripts, making
it difficult to distinguish whether the detected RNA is truly
chromatin associated or merely captured during the
process of transcription.
To address these questions, we developed a new method

named Profiling Interacting RNAs on Chromatin followed
by deep sequencing (PIRCh-seq), which enriches
chromatin-associated RNAs in a histone modification-
specific manner and classifies functional lncRNAs based
on the patterns of their attachment to nucleosomes with
specific chemical modifications. Compared to current
techniques for detecting chromatin-RNA association,
PIRCh-seq efficiently reduces the influence of nascent
transcripts with a significantly lower number of intronic
reads. Through performing PIRCh-seq with histone H3
and a number of different histone modification antibodies
on different cell types, we identified cell type-specific rela-
tionships between lncRNAs and epigenetics. We found
that chromatin-associated lncRNAs can be classified into
six functional groups based on their association with chro-
matin modifications, which undergo dynamic changes
with cell differentiation. In addition, we found that bases
on lncRNAs attached to chromatin tend to be more single
stranded in an allele-specific manner. Overall, our PIRCh-
seq data provides novel insights into global functional and
mechanistic studies of chromatin-associated lncRNAs.

Results
PIRCh-seq identifies RNA association with specific histone
modifications in living cells
We conceived of PIRCh-seq as the inverse of ChIRP, a
previously developed and robust method to crosslink

endogenous RNA-chromatin interactions in living cells
[25]. As tested by previous ChIRP-southern, 1% glutaralde-
hyde is better than 1% formaldehyde crosslinking in cap-
turing RNA-chromatin associations. In the PIRCh-seq
work flow, living cells are chemically crosslinked by glutar-
aldehyde and quenched with glycine, which prevents
chromatin-associated RNA from further degradation.
Chromatin is extracted and sonicated to 300–2000 base
pair (bp) size, and then immunoprecipitated (IP) by histone
modification-specific antibodies. Residual DNA and pro-
teins are removed, and retrieved RNAs are then subjected
to deep sequencing (the “Methods” section, Fig. 1a). We
tested the possibility that glutaraldehyde crosslinking may
alter the pull-down specificity of antibodies targeting his-
tone modification. Using SNAP-ChIP [26], a pool of modi-
fied mono-nucleosomes with known histone tail
modifications individually tagged with DNA barcodes, we
found that glutaraldehyde crosslinking did not affect anti-
body specificity (Additional file 1: Figure S1A-C). The in-
put control for PIRCh is the lysate obtained after
crosslinking and sonication but not subject to IP, which
was also analyzed in deep sequencing. RNAs that are re-
trieved by a histone modification over input beyond that
expected by chance are considered PIRCh-seq hits. In this
study, we generated and analyzed 26 high-resolution
PIRCh-seq datasets from 2 different species—human and
mouse, and 5 cell types—human H9 embryonic stem cells
(H9), human female fibroblasts (HFF), mouse V6.5 embry-
onic stem cells (mESC), mouse embryonic fibroblasts
(MEF), and mouse neuronal precursor cells (NPC), target-
ing histone H3 and 6 histone modifications (namely
H3K4me1, H3K4me3, H3K27ac, H3K27me3, H3K9me3,
and H4K16ac) and input as control with 2 replicates for
each experiment (Additional file 1: Figure S1D). The cor-
relation heatmap shows that the expressions of the input
RNAs are similar to that of the total RNAs, and then from
the nuclear extraction and least similar to cytoplasm
(data obtained from GSE57231 and GSE32916 in the
same cell line) (Additional file 1: Figure S1E), suggest-
ing that our chosen input could serve as a reasonable
baseline for chromatin-associated RNA identification.
Correlation analysis of these samples indicates the
high reproducibility of PIRCh-seq experiments (R =
0.900–0.988, Additional file 1: Figure S1F-M).
As a proof of principle, we first examined PIRCh-seq

signal of the well-characterized lncRNA XIST, which coats
the inactive X chromosome in female cells, and is known
to be associated with heterochromatin with repressive his-
tone modifications [27]. Indeed, we observed that the
PIRCh-seq signal of XIST is highly enriched on histone
H3 over input in human female fibroblast cells (Fig. 1b),
as was histone H3 PIRCh followed by qRT-PCR for Xist
in female murine neural stem cells (NSCs) and intact
adult brain (Fig. 1c). These results suggest that PIRCh-seq
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is not only capable of enriching chromatin-associated
lncRNAs, but may be applied to study brain tissue in vivo.
Similarly, the lncRNA KCNQ1OT1, which is involved in
imprinting in Beckwith-Wiedemann syndrome by silen-
cing lineage-specific transcription through chromatin
regulation [28], is also enriched on histone H3 over input,
as expected (Additional file 1: Figure S2A). Additionally,
the imprinted oncofetal lncRNA H19 [29] was also
enriched by histone H3 PIRCh-seq (Additional file 1: Fig-
ure S2B). On the other hand, abundant protein-coding
and house-keeping mRNAs, such as ACTB or EEF2, did
not show PIRCh-seq enrichment as expected for cytoplas-
mic mRNAs (Additional file 1: Figure S2C-D).

Next, we checked whether PIRCh-seq could enrich for
RNAs associated with specific histone modifications. We
performed PIRCh-seq on female NPCs with three EN-
CODE consortium validated antibodies targeting
H3K4me3, H4K27ac, and H3K27me3. PIRCh-seq in fe-
male NPCs demonstrated that Xist RNA was enriched
by H3K27me3, a repressive mark enriched on the in-
active X-chromosome, but not by active histone marks
H3K4me3 nor H3K27ac that are depleted on the in-
active X (Fig. 1d). Interestingly, from Xist’s PIRCh-seq
signal, it is possible to infer which domain of this
lncRNA is associated with chromatin. Within the Xist
locus, the 5′ domain of Xist displays significantly more

Fig. 1 PIRCh-seq enables effective chromatin-RNA association in vivo. a Schematic representation of PIRCh approach followed by high-throughput
sequencing. b The overall enrichment of the H3 PIRCh-seq signal (bottom) over input (top) of lncRNA XIST in human female fibroblasts (fold change = 19).
Read counts were normalized to sequencing depth of 10 million. c PIRCh-qPCR analysis in mouse neuronal stem cells (NSCs, orange) and adult brain
(purple) shows that Xist is enriched on chromatin H3 compared with Actin control. d, e Normalized input and PIRCh-seq profiles with histone
modifications of H3K4me3, H3K27ac, and H3K27me3 at the lncRNA Xist (d) and lnc-Nr2f1 (e) locus in mouse neuronal precursor cells (NPC). Dash lines
represent fold change of PIRCh-seq over input and smoothed by 500 bp sliding windows. The boxed region represents the RepC domain on Xist. f
Normalized input and ChIRP-seq profiles of lncRNA lnc-Nr2f1 in NPC, and H3K4me3, H3K27ac, H3K4me1, and H3K27me3 ChIP-seq profiles in NPC. Showing
Clcn4 gene locus as an example. g Normalized log2 fold change of ChIP-seq signal over input around (± 10 kb) lnc-Nr2f1 ChIRP-seq peaks in NPC
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substantial enrichment in H3K27me3 PIRCh-seq as com-
pared to other regions along the RNA (highlighted by the
gray box, Fig. 1d), consistent with previous findings that
this is the domain potentially associated with chromatin
(repC domain) [30–32]. Conversely, coding genes such as
Actb and Eef2 were not enriched on chromatin with the
same set of modifications (Additional file 1: Figure S2E-F).
These results were obtained from three different cell lines
in two species and indicate that PIRCh-seq is able to iden-
tify histone modification-specific chromatin-associated
lncRNAs transcriptome-wide.
PIRCh-seq can also be utilized to identify novel histone

modification-specific chromatin-enriched lncRNAs. In
our NPC PIRCh-seq, a lncRNA upstream of the Nr2f1
gene, lnc-Nr2f1, was retrieved by the promoter marks his-
tone H3K4me3 (P < 0.05), but not enhancer-associated
nor repressive modifications (H3K27ac and H3K27me3),
indicating that this lncRNA may preferentially associate
with H3K4me3 regions (Fig. 1e). Recently, lnc-Nr2f1 was
reported to play a critical role in regulating neurodevelop-
mental disorders [33]. In order to further validate the
chromatin-RNA association of this lncRNA, we retrieved
lnc-Nr2f1 RNA and mapped its associated DNA elements
in NPCs (ChIRP-seq experiment). Overlaying lnc-Nr2f1
ChIRP-seq with ChIP-seq data of the histone modifica-
tions confirmed that lnc-Nr2f1 does bind to genomic loca-
tions with H3K4me3 (Fig. 1f, g), which further confirms
that the PIRCh approach can retrieve lncRNAs specifically
associated with certain modifications. In addition, gene
ontology analysis of lnc-Nr2f1 ChIRP-seq peaks using
GREAT [34] suggests that lnc-Nr2f1 regulates cerebellar
cortex development (Additional file 1: Figure S2G, P <
10−5), consistent with previous findings regarding the
function of this lncRNA. These results not only demon-
strate the reliability of PIRCh-seq in identifying
chromatin-associated ncRNAs, but also suggest potential
application of the histone modification-specific PIRCh-seq
approach in predicting their functions.

PIRCh-seq enriches lncRNAs on chromatin with low
nascent transcription
Various techniques have been developed to study ncRNA
functions on chromatin. For instance, ChIRP [25], CHART
[35], and RAP [36] are RNA-centric methods that profile
DNA binding sites genome-wide of one target RNA at a
time. Many investigators have isolated chromatin-
associated RNAs from stringent nuclear or chromatin frac-
tionation [17–19]. In addition, recent methods such as
GRID-seq and MARGI can be applied in mapping the glo-
bal RNA-chromatin interactome [20, 21]. Comparatively,
chromatin fractionation and sequencing detects chromatin-
associated RNA without delineating the specific chromatin
states that specific RNAs prefer. Furthermore, proximity
ligation methods predominantly detect nascent RNAs co-

transcriptionally tethered to chromatin by RNA polymer-
ase, confounding background signal from all RNAs in the
process of transcription. Thus, to evaluate the level of nas-
cent transcription from PIRCh, we compared our PIRCh-
seq results in H9 and HFF with that from GRID-seq [20],
MARGI [21], che-RNA isolation (named CPE “chromatin
pellet extract” for experiment and SNE “soluble-nuclear ex-
tract” for background control) [19], and chromatin-
associated RNAs (CAR) [17]. These experiments were all
performed in human cell lines. We found that the ratios of
intronic reads in PIRCh-seq profiles were significantly
lower than those from previously reported methods (P <
0.01, T test) and were almost comparable with input RNA-
seq from bulk cultured cells (Fig. 2a). Moreover, by aver-
aging signals over the entire transcriptome centered by
introns from all the existing methods (the “Methods” sec-
tion), we found PIRCh was more effective in obtaining ma-
ture RNAs than extant chromatin-RNA enrichment
methods, based on the higher signal over exons than in-
trons (Fig. 2b). We obtained similar findings in other cell
types and with every tested histone modification (Fig. 2c,
PIRCh-seq of V6.5 mouse ES cells with histone H3 and 6
histone modifications). These results demonstrate that
PIRCh-seq consistently generates a significantly lower level
of intronic reads with multiple histone modifications than
existing methods, and therefore is able to preserve regula-
tory interactions in trans between lncRNAs and chromatin.
To further estimate the level of nascent transcription,

we then integrated each histone modification-specific
PIRCh-seq profile with its corresponding ChIP-seq dataset
in the same cell line (V6.5 mESCs) [37], and asked
whether the PIRCh-seq signal of each RNA correlated
with the nearby ChIP-seq signal carrying the correspond-
ing modification (see the “Methods” section). Our results
suggest that there was no significant correlation with these
two sets of signals (Additional file 1: Figure S3A-E), con-
firming that the recovery of nascent transcripts from
PIRCh-seq is negligible. One likely explanation is that glu-
taraldehyde is a longer span crosslinking reagent (5 car-
bons instead of 1 carbon in formaldehyde) that is capable
of capturing more regulatory RNAs which are able to
interact over a longer range compared to nascent tran-
scripts [38, 39]. These results suggest that the majority of
PIRCh-seq-enriched chromatin-associated RNAs are ma-
ture RNAs with introns spliced out, which allows PIRCh-
seq to identify more chromatin-associated RNAs with low
abundance, such as many ncRNAs.

PIRCh-seq identifies ncRNAs associated with specific
histone modifications
Because PIRCh-seq enables transcriptome-wide annota-
tion of chromatin-RNA association, we next determined
whether various types of RNA (especially coding RNAs
versus ncRNAs) are differentially affiliated with chromatin.
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Fig. 2 (See legend on next page.)
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We first filtered the expressed RNAs in edgeR [40] and
normalized the RNA read counts in limma [41] for both
the PIRCh-seq and input samples (the “Methods” section,
Additional file 1: Figure S4A-B). We then defined a PIRCh
enrichment score by dividing the normalized read counts
in PIRCh over input, and ranked all the transcripts by
their enrichment scores in H3 PIRCh-seq. To test whether
ncRNAs were enriched on chromatin, we performed a
gene set enrichment analysis (GSEA) [42] of the annotated
coding and non-coding RNAs. We found that ncRNAs,
but not coding RNAs, were indeed highly enriched on
chromatin and many known ncRNAs were top ranked in
terms of chromatin enrichment scores (Fig. 2d). Next, we
performed PIRCh-seq with antibodies specific to distinct
histone modifications in mESCs. Similar to the enrichment
on histone H3, we expect that ncRNAs should be highly
ranked by the average fold enrichment of the histone
modification-specific PIRCh-seq signal versus the corre-
sponding input, among all the expressed genes. Indeed,
compared with mRNAs, we found that in most cases (22
out of 28), the average enrichment scores of the annotated
lncRNAs, pre-miRNAs, and snoRNAs, as well as other
ncRNAs, were significantly higher on H3 and multiple his-
tone modified chromatin than coding genes (Fig. 2e, P <
0.05, T test). We then checked the distributions of the
expressed and chromatin-associated RNAs on histone H3
and chromatin with other modifications in mESCs, and
found that ncRNAs were significantly more frequent on
chromatin compared with mRNAs (Additional file 1: Figure
S4C), serving as additional evidence that ncRNAs are more
enriched on chromatin in general. Furthermore, when we
defined a variation score which measured the standard de-
viation of the chromatin association enrichment scores
across each histone modification for every expressed RNA,
we concluded that ncRNAs are significantly more variable
than mRNAs (Fig. 2f, P < 0.001, T test). This suggests that
non-coding transcripts are more differentially enriched at
distinct chromatin states, consistent with the potential

regulatory function divergence of lncRNAs, and naturally
prioritizes downstream studies of lncRNAs by activity.
We then sought to characterize the ncRNAs signifi-

cantly on chromatin in mESC from their PIRCh-seq pro-
files. We considered PIRCh-seq biological replicates
versus the inputs in limma [41] and defined an RNA with
chromatin association by P value < 0.05 (the “Methods”
section). Using this cutoff, we identified 258 chromatin-
associated ncRNAs in mESC which were enriched in at
least 1 of the 6 histone modification-specific PIRCh-seq
profiles (Additional file 2: Table S1). To further evaluate
the performance of the PIRCh approach, we compared
our PIRCh-seq-enriched lncRNA results with 96 pub-
lished RNA-chromatin association profiles from ChIRP/
CHART/RAP/GRID-seq datasets, collected by LnChrom
[43]. We found a total of 23 lncRNAs, including Xist,
Firre, Rmrp, and Tug1, were also expressed in our mESCs.
All 23 lncRNAs were positively enriched in PIRCh, and 14
were significant with P < 0.05, reaffirming the sensitivity of
the PIRCh approach in identifying chromatin-associated
lncRNAs. Furthermore, we wanted to validate whether the
PIRCh lncRNA enrichment patterns were consistent with
results obtained from published orthogonal methods. We
hypothesized that if a lncRNA is able to associate with
DNA elements marked by a specific histone modification,
its genomic binding sites from ChIRP/CHART/RAP/
GRID-seq experiments should greatly overlap with corre-
sponding ChIP-seq peaks associated with the same modi-
fication. We then obtained the genomic binding sites
(peaks) of the 23 lncRNAs from the aforementioned ex-
periments, and found the ratio of this overlap from pub-
lished data (Fig. 2g) is highly correlated with the
corresponding PIRCh-seq signal among most of the
lncRNAs (Fig. 2h). The Spearman correlation coefficients
of the ratio of the overlap ChIP-seq peaks [37] with the
lncRNA’s PIRCh-seq enrichment scores in the same cell
line were significantly higher than random permutations
(Fig. 2i, P < 0.0001). These results further confirm that

(See figure on previous page.)
Fig. 2 ncRNAs are enriched on chromatin compared with protein coding transcripts. a Ratio of intronic over exonic reads obtained from different
chromatin-RNA association sequencing technologies (MARGI, GRID, CPE, CAR, and PIRCh) versus input controls in multiple cell lines. b Normalized
average read coverage around introns from different chromatin-RNA association sequencing technologies (MARGI, GRID, CPE, CAR, and PIRCh)
versus input controls in multiple cell lines. c Normalized average read coverage around introns from histone modification-specific PIRCh-seq
profiles (colored) and inputs (black) in mouse embryonic stem cells (mESCs). d Gene set enrichment analysis (GSEA) shows highly statistical
enriched (FDR = 0, P < 0.0001) non-coding genes (green) and depleted coding genes (blue) on histone H3 in mESCs. Genes were ranked by their
histone H3 PIRCh enrichment scores. e Average fold enrichment (calculated by limma in R) of the coding gene, lncRNA, pre-miRNA, snoRNA, and
other ncRNAs from histone modification-specific PIRCh-seq profiles (namely H3, H3K4me1, H3K4me3, H3K27ac, H3K27me3, H3K9me3, and
H4K16ac) in mESC. Error bar shows the standard deviation from the mean. f Average variation score of the PIRCh-seq signals for the coding
versus non-coding genes (****P < 0.0001, two-tailed Welch’s T test). Error bar shows the standard deviation from the mean. g Heatmap displaying
the ranking of the ChIP-seq enrichment of the chromatin binding sites of 23 lncRNA. The 23 lncRNAs are chromatin enriched from PIRCh-seq,
and the chromatin binding sites are obtained from ChIRP/CHART/RAP/GRID-seq profiles from the LnChrom database. Colors represent ranking
from 1 to 5. h Heatmap shows the ranking of PIRCh-seq enrichment of the same lncRNAs in g. Colors represent ranking from 1 to 5. i Bar plot of
the Spearman correlation coefficients between the ranking in g and h for each lncRNA versus random permutation (****P < 0.0001, two-tailed
Welch’s T test). j Unsupervised clustering of the Pearson correlation coefficients matrix of the histone modification-specific PIRCh-seq profiles
based on the enrichment scores from the 258 chromatin-associated ncRNAs in mESC
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PIRCh-seq reliably identifies chromatin-associated
lncRNAs.
Conversely, we hypothesized that certain ncRNAs are

enriched at chromatin with distinct types of DNA regula-
tory elements, and asked whether gene regulatory elements
could be naturally differentiated via chromatin-ncRNA as-
sociation. We then calculated the pairwise Pearson correl-
ation of all chromatin states based on the PIRCh-seq
enrichment scores of 258 chromatin-associated ncRNAs. It
is clear that the enhancer-like states (H3K27ac, H4K16ac,
H3K4me1) were clustered together, then the repressive
histone modifications (H3K27me3, H3K9me3), while the
promoter (H3K4me3) was grouped in a distinct cluster
(Fig. 2j). Interestingly, the PIRCh-seq signal of histone H3
clustered closest with H3K4me1 (Pearson’s correlation r =
0.89). We observed that H3K4me1 ChIP-seq signal from
the same cells as above covers three to four times the gen-
omic regions than other chromatin modifications, which
may reflect the differential sensitivities of the different anti-
bodies for ChIP (Additional file 1: Figure S4D).

PIRCh-seq classifies functional ncRNAs via chromatin
association
Different gene regulatory elements—such as enhancers,
promoters, insulators, and silenced elements—carry dis-
tinctive and characteristic histone and DNA modifications
(Fig. 3a) [44]. We noticed that 14–25 ncRNAs in HFF and
H9 respectively were also reported as “essential” ncRNAs
with functions through CRISPRi screening [6]. We then
hypothesized that specific modification-enriched ncRNAs
regulate each of these elements, and thereby, the functions
of ncRNAs can be classified by their divergent chromatin
modification enrichment. Hence, PIRCh-seq is anticipated
to classify and associate ncRNAs with functions such as
promoter, enhancer, silencer, or insulator. To test this hy-
pothesis, we analyzed 7sk, a well-known regulator of RNA
polymerase II elongation that resides at enhancers, pro-
moters, and super-enhancers [45], consistent with its role
in enhancer-promoter interactions. From 7sk ChIRP-seq
data in mESC, we noticed that its chromatin occupancy
sites greatly overlapped with ChIP-seq peaks of H3K4me1,
H3K4me3, and H3K27ac in the same cell type (Fig. 3b),
confirming an active function of 7sk. Consistently, PIRCh-
seq signal of 7sk in mESC was also enriched at chromatin
carrying these three histone modifications, but depleted of
repressive modifications such as H3K27me3 and
H3K9me3 (Fig. 3c), suggesting the possibility to extrapo-
late lncRNA function using PIRCh-seq.
We then analyzed all 258 PIRCh-enriched ncRNAs and

sought to categorize their functions based on their PIRCh-
seq signals. We found that these ncRNAs associate with
chromatin in a combinatorial pattern, similar to those ob-
served in ChIP-seq performed on histone modifications
(Additional file 1: Figure S5A). H3K27ac, H3K4me3, and

H3K4me1 were the top three most favored chromatin
states that interacted with ncRNAs, consisting of 88% of
the enriched ncRNAs in mESC. As we know from histone
ChIP-seq, instead of each individual modification, a com-
binatorial pattern of multiple modifications better classi-
fies the functions of DNA elements [46]. A machine
learning strategy employing hidden Markov model, named
chromHMM, which automatically learns the major com-
binatorial patterns, was applied successfully to classify
DNA elements based on histone modifications [47, 48].
We then inquired if a similar strategy could be used to
classify chromatin-associated ncRNAs and examine if the
functions of these ncRNAs could be distinguished based
on their association with histone modifications. To inves-
tigate this relationship transcriptome-wide, we started
from a 258 by 6 matrix of enrichment scores in mESC,
where each row was an enriched ncRNA as defined above,
each column was a histone modification, and each elem-
ent of the matrix represented the enrichment score of the
corresponding ncRNA on the specific modified chromatin
(the “Methods” section). We then applied K-means clus-
tering on the matrix, where the number of K’s was deter-
mined by the Silouette method [49]. This analysis yielded
six distinct groups of chromatin-associated ncRNAs,
which were visualized in a two-dimensional projection of
t-distributed stochastic neighbor embedding (tSNE)
(Fig. 3d). Within these 258 chromatin-associated ncRNAs,
247 are lncRNAs, and many well-studied ncRNAs, such as
7sk [45], Neat [10] and Malat1 [50], and Dancr [51], nat-
urally clustered into groups with distinct function. Inter-
estingly, 14 lncRNAs were also reported to have a
biological function based on LncRNAdb [52], and 8 out of
56 were predicted bivalent in mESCs (Additional file 1:
Figure S5B, odds ratio = 4.4, P < 0.01, chi-square test). In
addition, for each cluster, we evaluated the relative contri-
butions of each histone modification based on the enrich-
ment pattern of the chromatin-associated RNAs, and
defined the clustered states by active promoters, hetero-
chromatin, weak promoter, strong enhancer, bivalent, and
weak enhancer (Fig. 3e). Overall, we partially recapitulated
the chromatin classifications by applying the chromHMM
algorithm based on PIRCh-seq profiles with six well-
studied histone modifications [47]. These results suggest
that the chromatin association of ncRNAs can be used to
classify ncRNAs that might have functional implications.
Although tens of thousands of non-coding transcripts

were discovered in the past few years, only a small por-
tion that function in cis or trans through chromatin
organization were consolidated [53, 54]. Since the PIRCh
approach cannot pinpoint the exact binding sites of
chromatin-associated lncRNAs, it does not directly pre-
dict whether each lncRNA is functioning in cis or trans.
Instead, PIRCh provides more information about the
epigenetic function of the lncRNA, in context of the
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histone modifications it associates with. Our analysis
suggests that chromatin-associated lncRNAs function
both in cis and trans. For example, when we calculated
the nearby (± 100 Kb) coding gene expression of the
PIRCh-clustered ncRNAs in Fig. 3d, we observed that
lncRNAs were monotonically decreasing from the more
active to more repressive groups; additionally, the nearby
coding gene expression of the “Active Promoter” and
“Strong Enhancer” lncRNA groups were significantly
higher than that of the group “Repressed” ncRNAs
(Fig. 3f, P < 0.05, T test). However, when the chromatin-
associated ncRNAs were grouped based on their enrich-
ment with each histone modification, no significant ex-
pressional differences were observed from nearby coding
genes (Additional file 1: Figure S5C), e.g., compared
H3K27me3 vs H3K27ac. No similar trends were ob-
served in the expression patterns of the ncRNAs them-
selves (Additional file 1: Figure S5D). Nevertheless, not
all the lncRNAs were enriched in our PIRCh experiment
function in cis. When we integrated each histone
modification-specific PIRCh-seq profile with its corre-
sponding ChIP-seq signal at the genomic loci of the
chromatin-enriched ncRNAs, no statistical correlation
was observed (Additional file 1: Figure S3), suggesting
that some lncRNAs can function in trans. However, fur-
ther investigations using ChIRP and ChIP analysis pref-
erably at single cell level are still required to fully
uncover their regulatory patterns on chromatin.

Cell type-specific chromatin association of ncRNAs
It is known that ncRNAs are differentially expressed in
distinct cell types and perform specific cellular functions.
Therefore, we sought to check whether the patterns of
ncRNA-chromatin association diverge in distinct mouse
cell types, and how these patterns contribute to their cell
type-specific functions. We then performed PIRCh-seq on
MEF cells and analyzed the profiles in an identical fashion
to the mESC data. Similar to the mESC results, we ob-
served that PIRCh-seq identified lncRNAs enriched on
chromatin with low nascent transcription (Additional file 1:
Figure S6A), and non-coding transcripts were consistently
more enriched on chromatin compared with protein cod-
ing gene in MEF cells (Additional file 1: Figure S6B-C),

validating these conclusions in distinct cell types. We then
performed a similar enrichment analysis on MEF and
NPC PIRCh-seq profiles and obtained 200 and 110
chromatin-associated ncRNAs, respectively (P < 0.05). The
chromatin-enriched ncRNAs in MEF also form a combin-
ational pattern with multiple histone modifications (Add-
itional file 1: Figure S6D-E). As a negative control, the IgG
PIRCh was tested in tandem with the other chromatin
modification PIRCh experiments performed in MEF, take
PVT1 as an example (Additional file 1: Figure S6F). Differ-
ential analysis of PIRCh groups over IgG control revealed
that only 1 out of 200 PIRCh-enriched ncRNA over input
was also enriched in IgG, evincing the high specificity of
our method in identifying the chromatin-associated
ncRNAs. In our analysis, a total of 458 chromatin-
enriched ncRNAs were identified in 3 cell types, 20 of
which were enriched in all 3 cell types (Fig. 4a). We then
calculated the Pearson correlation coefficient matrix based
on the enrichment scores of these 458 ncRNAs, where the
expression divergence of the same lncRNA in different
cells was normalized. Unsupervised clustering of this cor-
relation matrix suggested that the cell type specificity was
the dominant factor which determines ncRNA-chromatin
association (Fig. 4b).
Embryonic stem cells are characterized by their pluripo-

tency—the ability to give rise to multiple cell types. The
chromatin state in ES cells is reported to be more flexible
than those of differentiated cells [55]. Interestingly, com-
pared with those of the more differentiated cells (MEF
and NPC), the ncRNA-chromatin association in mESCs
showed a higher correlation coefficient among distinct
histone modifications, suggesting less specificity in
chromatin-ncRNA association in mESCs than those in dif-
ferentiated cells (Fig. 4b). In addition, we analyzed the per-
centage of enriched ncRNA versus total expressed ncRNA
in each cell type for every tested chromatin modification,
and found significantly more ncRNAs enriched on chro-
matin with H3K9me3 in ES cells when compared with
MEF (Fig. 4c, P < 0.05, chi-square test), but fewer on chro-
matin with H4K16ac. This result may reflect the joint
presence of activating and repressive histone marks on
genome regions, termed bivalent [56] and trivalent chro-
matin domains [57] in ES cells. We identified ncRNAs

(See figure on previous page.)
Fig. 3 PIRCh-seq classifies functional ncRNAs via chromatin state association. a Summary of histone modifications representing distinct regulatory
patterns. b The enrichment of the 7sk ChIRP-seq peaks overlap with different histone modification ChIP-seq peaks in the same cell line (mESC). A
positive value indicates the ChIRP-seq peaks are highly enriched with ChIP-seq peaks compared to random, and a negative value indicates
depletion. c The PIRCh enrichment score of the lncRNA 7sk in mESC from distinct histone modification-specific PIRCh-seq experiments. A positive
value means enriched, and a negative value means depleted. d Classification of the PIRCh-seq identified chromatin-associated ncRNAs (n = 258)
in mESC. Scatter plot shows the t-SNE result on PIRCh-seq enrichment score matrix and annotated by K-means clustering. e Functional
classification of histone-specific chromatin-RNA association patterns defined by chromHMM algorithm. f Box plot of the expression of the coding
genes nearby (± 100 Kb) each group of PIRCh-clustered ncRNAs defined in d. Center lines represent mean values; box limits represent the
interquartile range. The expression of the coding genes that are close to the ncRNAs in the “repressed” group is significantly lower than those in
the “active promoter/enhancer” group (P < 0.05, two-tailed Welch’s T test). Genes close to un-enriched ncRNAs are shown as controls
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which were associated with both active and repressive his-
tone marks consistent with bivalency, while others associ-
ated with strictly active or repressive marks (Fig. 4d). Since
PIRCh-seq enabled us to identify cell type- and histone
modification-specific ncRNA-chromatin associations, we
first screened for ncRNAs which were enriched at both ac-
tive and repressive chromatin in ES cells but only enriched
in either active or repressive markers in differentiated cells.
We found several ncRNAs of this description. For example,
ncRNA uc008bcq.1 is broadly enriched in ES cells with high
PIRCh-seq signals associated H3K4me1, H3K4me3,
H3K27me3, and H3K9me3 modifications, but enriched
only on active chromatin of H3K4me1 in MEF and repres-
sive chromatin of H3K27me3 in NPC, implying lineage-
specific resolution of chromatin associations (Fig. 4e). Inter-
estingly, there were dozens of such ncRNAs that are dis-
tinctly enriched in certain cell types. Since ES cells possess
a higher potential to differentiate into multiple lineages,
and hence more poised chromatin states, we expected more
bivalent-enriched (“bi-enriched” for short) and fewer
mono-enriched ncRNAs in mESC compared with more dif-
ferentiated cells such as MEF and NPC. In mESC, we found
30 bi-enriched and 33 mono-enriched ncRNAs, while in
MEF, we found only 8 bi-enriched but 32 mono-enriched
ncRNAs; lastly, in NPC, we found 2 bi-enriched and 11
mono-enriched ncRNAs (Fig. 4f, P < 0.01 for MEF and P <
0.05 for NPC, chi-square test). As well known, ES cells are
enriched for bivalent chromatin, comprised of both
H3K4me3 and H3K4me27 on the same nucleosomes [58,
59] that mark “poised” developmental genes that may either
turn on (marked by H3K4me3 only) or turn off (marked by
H3K27me3 only) in distinct differentiated cell types. We in-
terpret our PIRCh-seq result to mean that certain ncRNAs
can associate with H3K27me3 or H3K4me3 in either the
bivalent or the monovalent state, and we are observing the
combinatorial action of the histone code in cell differenti-
ation. These results indicate that ncRNAs may play distinct
functional roles by either enhancing or repressing gene ex-
pression or both in certain cell types, conducted by affixing
to either active or repressive chromatin or both.

Single-stranded RNA regions as candidate mediators of
chromatin association
As a key player in the central dogma of biological regu-
lation, RNA and its ability to adopt specific structures is

intimately involved in every step of gene expression. Previ-
ously, multiple approaches have been described in order
to probe RNA secondary structure transcriptome-wide
in vitro [60] and in vivo [32, 61] in mammalian cells, re-
vealing structural principles of RNA-protein interactions.
Correspondingly, we noted that RNA enrichment on
chromatin occurs in a domain-specific manner based on
our PIRCh-seq data. For instance, the repC domain of Xist
is dramatically more enriched on chromatin carrying
H3K27me3 modifications (highlighted by the gray box,
Fig. 1d). Malat1 is another well-studied chromatin-
associated lncRNA which binds to active chromatin [10].
Instead of attaching to chromatin across the entire tran-
script, we noticed from the H3K4me3 PIRCh-seq signal
that there were certain regions on Malat1 which were
more closely associated with chromatin than the rest bases
on the transcript (Fig. 5a). Interestingly, these regions tend
to be single stranded according to both 2′ hydroxyl acyl-
ation profiling experiments (icSHAPE data) and RNA sec-
ondary structure predictions from RNAfold [62] (Fig. 5b).
This led us to investigate whether there are structural
preferences involved in RNA-chromatin association
(Fig. 5c). We first obtained a transcriptome-wide and per-
base RNA secondary structure profile from icSHAPE data
measured in mESCs [61]. A high icSHAPE score suggests
a greater probability that a base is single stranded. We
then applied a 5-base sliding window method to identify
the enriched sites (peaks) on each RNA which interacted
with chromatin from PIRCh-seq, compared with our input
control (see the “Methods” section). We then overlaid the
structural profiles from icSHAPE on top of all the histone
modification-specific PIRCh-seq peaks centered by the
peak summits and generated an average structural profile
for each modification. Our results show that bases ~ 5–10
nt upstream of the chromatin-associated peaks are more
likely to be single stranded (Fig. 5d). To test the signifi-
cance of this single-strand preference, we performed two-
tailed Welch’s T tests by comparing all the icSHAPE
scores of the bases from PIRCh-seq peaks with those from
a randomly selected background, and found this
phenomenon was significant with P < 10−5. We then asked
whether RNAs containing a greater number of single-
stranded bases are more likely to be associated with chro-
matin. We separated expressed RNAs into two groups
based on chromatin enrichment or depletion, and

(See figure on previous page.)
Fig. 4 Cell type-specific chromatin association of ncRNAs. a Number of chromatin-enriched RNAs in mESC, MEF, and NPC. b Unsupervised clustering of
the Pearson correlation coefficient matrix of the histone modification-specific PIRCh-seq profiles in mESC, MEF, and NPC, based on the enrichment scores
from the 458 chromatin-associated ncRNAs in each cell type. c Ratio of the chromatin-enriched ncRNA under each chemical modification over the total
number of enriched ncRNAs in mESC, MEF, and NPC. d Schematic illustration of how RNAs enriched on both the repressive and active chromatin (bi-
chromatin enriched) and either the repressive or active chromatin (mono-chromatin enriched). e UCSC tracks of the normalized PIRCh-seq signal at the
lncRNA uc008bcq.1 locus in mESC, MEF, and NPC. uc008bcq.1 is bi-chromatin enriched in mESC, but mono-chromatin enriched in MEF and NPC. f Number
of ncRNAs that are bi-chromatin enriched or mono-chromatin enriched in mESC, MEF, and NPC (***P< 0.001, *P< 0.05, chi-square test)
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calculated the average icSHAPE scores for every RNA in
each group. We noticed that, on average, RNAs enriched
on chromatin tended to be more single stranded with
higher icSHAPE scores (Fig. 5e, P < 0.001, T test). Simi-
larly, we took the top 100 most single-stranded RNAs and
top 100 most double-stranded RNAs based on their aver-
age icSHAPE scores and confirmed that the average chro-
matin enrichment scores of the most single-stranded
RNAs were significantly higher than those of the double-
stranded RNAs (Fig. 5f, P < 0.01, T test). These results
suggest that RNAs containing more single-stranded re-
gions are more likely to associate with chromatin.

Single nucleotide variants and RNA modifications that
alter chromatin association
Genetic variation can alter RNA structure and function
in vivo. Single nucleotide polymorphisms (SNPs) comprise
the most prevalent source of variation, and SNPs that alter
RNA secondary structures, termed “riboSnitches” (a fusion
of SNP and riboswitch), are a recently appreciated source
of non-coding variants associated with human diseases
[63]. We therefore asked whether different alleles of the
same RNA may differentially associate with chromatin, and
if so, how is it related to the RNA structure? In order to an-
swer those questions, we performed PIRCh-seq in the NPC
line that is derived from the F1 hybrid offspring of two
mouse parental lines (129S1 and CAST) with a high density
of SNPs across the genome (~ 1 SNP per 100 nucleotides).
We first built the reference genomes for each mouse line
and aligned the raw reads to 129S1 and CAST separately
with 0 mismatches to reduce false-positive hits. Reads
mapped to either 129S1 or CAST were counted to con-
struct the allele-specific RNA expressions and chromatin
enrichment profiles (see the “Methods” section). First, we
looked at whether allelic RNA chromatin association is re-
lated to allelic expression. From allele-specific PIRCh-seq

analysis, we found that for most RNAs, allelic expression
from the two alleles determines allelic chromatin associ-
ation pattern. For example, it is known that only the 129S1
version of the lncRNA Xist is expressed in this cell line.
Consistent with allelic expression, we found that enrich-
ment of Xist in H3K27me3 modification is much higher in
129S1 versus the CAST version of the lncRNA (Fig. 5g).
An additional example is the lncRNA Malat1 in which
both the 129S1 and CAST alleles are almost equally
expressed. As predicted, we observed unbiased enrichment
on chromatin for both alleles. Moreover, we discovered sev-
eral lncRNAs that are enriched on chromatin in an allele-
specific manner independent of the expression levels from
the two alleles (Additional file 3: Table S2). For example,
Gas5 is a lncRNA that binds to PRC2 complex and medi-
ates transcriptional repression [64]. We found that Gas5 is
enriched in H3K27me3 modification, consistent with its
understood repressive function. Notably, even though the
CAST version of Gas5 was threefold more expressed in the
input sample, the 129S1 allele was fourfold more enriched
on chromatin carrying H3K27me3 modification (Fig. 5g,
P < 0.05, T test), suggesting that 129S1 allele of Gas5 prefer-
entially associates with chromatin. To further investigate
the mechanism under Gas5 allele-specific enrichments, we
predicted the secondary structure of the 129S1 and CAST
version of Gas5 using RNAfold (Additional file 1: Figure
S7A, B), and found that several riboSnitches (1057 A/T,
1059G/T, 1134 C/T, CAST (mm9)/129S1) converted one
of the chromatin binding sites of Gas5 from single stranded
in 129S1 to double stranded in CAST and thus depleted its
association with repressive chromatin in the latter (Fig. 5h).
Consistent with this prediction, when we calculated the
icSHAPE score obtained from mESC containing 129S1 al-
lele [65] for the Gas5 allelic-enriched region in H3K27me3,
we concluded that the region is more likely to be single
stranded (Additional file 1: Figure S7C).

(See figure on previous page.)
Fig. 5 RNAs with single strand are more likely to associate with chromatin. a UCSC track of the normalized input (black) and H3 (red) and
H3K4me3 (green) PIRCh-seq signals of lncRNA Malat1 in mESC. Dash lines represent fold change of PIRCh-seq over input and smoothed by 500
bp sliding windows. The boxed region represents the most enriched domain on Malat1. Bottom peaks are chromatin-enriched sites on Malat1. b
Structure profile from icSHAPE and structural prediction from RNAfold around a zoom in chromatin-associated peak on lncRNA Malat1. c
Computational workflow to integrate RNA secondary structure information from icSHAPE and chromatin enrichment information from PIRCh-seq
to study the structural preference of chromatin-RNA association. d Average diagram of icSHAPE scores around all PIRCh-seq peaks under different
histone modifications (colored solid line) versus a randomly selected background (gray solid line). P values (colored dash line) were estimated by
using two-tailed Welch’s T test on every position between PIRCh-seq profiles over background. e Box plot of the icSHAPE score of PIRCh-seq
enriched vs depleted RNAs (***P < 0.001, two-tailed Welch’s T test). Center lines represent mean values; box limits represent the interquartile
range; whiskers each extend 1.5 times the interquartile range; dots represent outliers. f Box plot of the PIRCh-seq enrichment scores of the top
100 most single-stranded RNAs versus the top 100 most double-stranded RNAs based on icSHAPE scores (**P < 0.01 two-tailed Welch’s T test).
Center lines represent mean values; box limits represent the interquartile range; whiskers each extend 1.5 times the interquartile range; dots
represent outliers. g Relative allele-specific RNA expression and chromatin enrichment of lncRNAs Xist, Gas5, and Malat1 in the 129S1 allele versus
the CAST allele of NPC. The Y-axis represents the log2 fold change of the allelic signals in 129S1 over CAST. The 129S1 version of lncRNA Xist is
highly expressed and also enriched at chromatin with H3K27me3 modification. Both alleles of lncRNA Malat1 were almost equally expressed and
enriched. The 129S1 version of Gas5 was lowly expressed but highly enriched on chromatin compared to the CAST version of the same gene. h
Normalized allele-specific input and histone H3K27me3 PIRCh-seq signals in the 129S1 and CAST alleles. Top shows single nucleotide
polymorphisms (SNP) positions that distinguish the alleles

Fang et al. Genome Biology          (2019) 20:292 Page 13 of 21



Another major factor that can influence RNA struc-
ture is RNA modification, such as the N6-methyladeno-
sine (m6A) modification. Previous studies have shown
that m6A can alter base-pairing thermodynamics and
destabilize RNA duplexes [61, 66, 67]. We also evaluated
whether RNA modifications affect RNA-chromatin asso-
ciation. We integrated PIRCh-seq data with the
transcriptome-wide profiles of RNA m6A modifications
in mESCs from our previous study [68], and found the
distribution of PIRCh-seq peaks along the transcripts is
similar to that of m6A modified regions (Additional file 1:
Figure S8A). When we overlaid m6A signals on top of
PIRCh-seq peaks, we found that RNA bases associated
with chromatin are generally more m6A modified (P <
10−5 in H3, Additional file 1: Figure S8B-C). These re-
sults may reflect the tendency of m6A to induce RNA
single-stranded regions that coincide with elements for
chromatin association, or due to additional mechanisms
that jointly impact chromatin association and RNA
modification.

Discussion
PIRCh-seq identifies chromatin-associated RNAs genome-
wide
A large and growing body of literature has investigated
protein-RNA interactions. The development of ap-
proaches such as RIP [13], CLIP [14], fRIP [15], and
CARIP [16] has enabled the successful elucidation of
many RNAs associated with proteins, including multiple
chromatin regulators. Studies have also shown that
many lncRNAs function through DNA/chromatin inter-
action. Previously described techniques such as ChIRP-
seq and CHART-seq have been used to identify
genome-wide binding sites of specific lncRNA to chro-
matin. However, these methods require prior knowledge
of which particular lncRNAs are capable of binding to
chromatin before ChIRP-seq or CHART-seq can be ap-
plied. Furthermore, ChIRP or CHART is limited to
examining one chromatin-associated RNA at a time. In
this study, we describe a new technology, PIRCh-seq,
which enables a global profiling of chromatin-associated
RNAs through a robust method to crosslink endogenous
RNA-chromatin interactions in living cells. Compared
with current methods which predominantly detect nas-
cent RNAs co-transcriptionally tethered to chromatin by
RNA polymerase, PIRCh-seq significantly reduces the
influence of nascent transcripts and more clearly reveals
relationships between chromatin and its associated
ncRNAs. Although the PIRCh approach cannot pinpoint
the exact binding sites of the chromatin-associated
lncRNAs, and therefore does not inform whether each
lncRNA is functioning in cis or trans, it is able to pro-
vide a significantly higher ratio of mature RNAs. Exam-
ples of some well-studied cases, such as Xist, 7sk, H19,

and KCNQ1OT1, demonstrate that PIRCh-seq is likely
generalizable to the majority of ncRNA. Additionally,
PIRCh-seq identifies novel chromatin-associated
lncRNAs and not only provides potential targets for
mechanistic studies using ChIRP and CHART, but could
also be extended to reveal the function and mechanisms
of lncRNAs which are disease-relevant. However, the
PIRCh-seq approach, like RIP/CLiP-seq-like methods,
may also be heavily contaminated with co-purified
mRNA species that often compose more than 50% of
RNA material. Therefore, further experimental and ana-
lytical improvements are required to truly capture
chromatin-associated ncRNAs.

PIRCh-seq classifies ncRNA putative function via histone
modification and cell type-specific chromatin-RNA
association
Another major advantage of the PIRCh method is that it
utilizes antibodies to pull down chromatin with specific
chemical modifications and thereby enables the classifi-
cation of chromatin-associated ncRNAs with putative
functions such as promoter, enhancer, silencer, or bi-
valent. Since we performed PIRCh-seq with various his-
tone modification antibodies and in different human and
murine cell types, the dataset provides rich resources to
study chromatin-associated ncRNAs in mammalian cells.
In addition, different cell types and histone modifica-
tions did not show much technical variation, confirming
that PIRCh-seq may be a useful technology to perform
profiling of epigenetic-associated ncRNAs. Analogous to
the types of gene regulatory elements bearing distinctive
histone and DNA modifications, we developed a bio-
informatics method to classify the putative biological
functions of ncRNAs based on their enrichment patterns
on chromatin with different histone modifications. Our
method successfully arranged several well-studied
lncRNAs in the correct functional category and pre-
dicted functions for hundreds of other ncRNAs from
their chromatin association patterns. More importantly,
when a similar analysis was performed on multiple cell
types, chromatin state-specific ncRNA enrichment pat-
terns were generally conserved, suggesting this is a reli-
able method for functional classification. Since ncRNA-
chromatin interaction is likely a widespread epigenetic
regulation mechanism in many cell types, our integrative
approach in identifying and classifying chromatin-
associated ncRNAs can be broadly applicable to many
other cell types to deeper investigate ncRNA functions.
However, chromatin association does not guarantee that
a ncRNA will have a biological function; furthermore,
the histone modification-specific PIRCh-seq approach
can only predict putative functions. As such, the true
function of each ncRNA still requires further investiga-
tion beyond PIRCh-seq.
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RNA secondary structure affects RNA-chromatin
interaction
We observed that RNAs attach to chromatin in a
domain-specific manner. However, when we surveyed
the enriched sites of chromatin-associated RNAs linked
to various histone modifications in different cell types,
we did not find significant sequence motifs, suggesting
the existence of a complex mechanism responsible for
the RNA-chromatin interaction. On the other hand,
when we integrated PIRCh-seq signals with RNA struc-
tural information from previous icSHAPE and RNA
modification m6A profiles and further evaluated struc-
tural information regarding the enriched domains, we
found that ncRNAs were likely to bind to chromatin
through single-stranded region or bases with m6A
methylation. This may possibly be explained by the sup-
position that RNA-dependent recruitment of transcrip-
tional activators and repressors may occur within a
double-stranded structural region, and therefore, single-
stranded regions are made more accessible to chromatin.
In addition, chromatin interactions may also be allele
specific, especially when certain alleles result in distinct
RNA secondary structures. In conclusion, when taken as
a whole, these results open new avenues of inquiry and
require further investigation to fully elucidate the mo-
lecular mechanisms of ncRNA-chromatin interaction.

Conclusions
We developed a PIRCh-seq approach that enables to
identify chromatin-associated RNAs in a histone
modification-specific manner transcriptome-wide. We
identified hundreds of chromatin-associated RNAs in
several cell types and predicted their putative functions
in gene regulation. We found structural preference of
RNA bases accessible to chromatin and discovered hun-
dreds of allele-specific RNA-chromatin interactions. We
expect broad application of PIRCh-seq to elucidate the
basic mechanisms of chromatin-RNA interaction.

Methods
Cell culture
V6.5 mouse ES cells were cultured on 0.2% gelatin-
coated plates at 37 °C with mES media: 500 ml Knockout
DMEM (Gibco), 90 ml FBS, 6 ml non-essential amino
acid (NEAA, 100×, Gibco), 6 ml glutamine or glutamax
(200 mM stock solution), 6 ml Pen/Strep, 1 ml BME, and
60 μlLIF (Millipore, ESG1106). Mouse embryonic fibro-
blast (MEF) cells were cultured at 37 °C and 5% CO2 in
450 ml DMEM, 50 ml FBS, 5 ml Pen/Strep, 5 ml NEAA,
5 ml pyruvate, and 4 μl beta-mercaptoethanol. Mouse
Neural Precursor cells (NPCs) were cultured in N2B27
medium (DMEM/F12 (Invitrogen, 11320-033), Neuroba-
sal (Gibco, 21103-049), NDiff Neuro-2 Medium Supple-
ment (Millipore, SCM012), B27 Supplement (Gibco,

17504-044)) supplemented with EGF and FGF (10 ng/
ml, each) (315-09 and 100-18B, Peprotech). Cells were
passaged using Accutase (SCR005, Millipore) and cul-
tured on 0.2% gelatin-coated plates. H9 human embry-
onic stem cells were seeded in a feeder-free system using
Matrigel hESC-Qualified Matrix (354277, Corning) and
were maintained in Essential 8 media (A1517001,
Thermo Fisher Scientific) as described previously [69].
Cells were passaged every 3 days as clumps with 0.5 mM
EDTA. Human Female Fibroblasts (HFF) were cultured
at 37 °C and 5% CO2 in DMEM supplemented with 1%
pen/strep and 10% FBS.

PIRCh-seq library preparation
To harvest the cells for PIRCh-seq, approximately 4 ×
107 cells were trypsinized and pooled into a 50-ml falcon
tube, after washing with 40 ml of cold PBS once. Fresh
1% glutaraldehyde in room temperature PBS was created
from 25% stock, and the remaining stock was discarded.
The cell pellet was resuspended in 1ml of glutaralde-
hyde solution, and a p1000 pipette was used to resus-
pend cells and to top up to 40 ml (1 ml 1%
glutaraldehyde/1 million cells). After inverting several
times, the tube was gently shaken for 10 min, and then
quenched with 1/10 volume of 1.25M glycine. The tube
was inverted several times, shaken gently for 5 min, and
spun down 2000g for 4 min. The pellet was then washed
once with 40 ml cold PBS. The pellet was responded in
1 ml/20million cells of cold PBS. Cells were aliquoted at
1 ml each to a fresh Eppendorf tube and spun down
2000g for 4 min. After supernatant was carefully aspi-
rated, cell pellets were flash frozen and stored at − 80 °C
if necessary.
For sonication, prepared cell pellets were spun down

at 2000g for 4 min and any remaining PBS was removed.
Lysis per 20 million cells was performed with 1 ml of
lysis buffer (1% SDS, 50 mM Tris 7.0, 10 mM EDTA, 1
mM PMSF, 0.1 U/μl Superase-in (Ambion), 1× Protein-
ase inhibitor (Roche)). Lysate was then sonicated till the
chromatin size was ~ 300–2000 bp and the lysate was
clear. We used the Covaris E220 equipment with the fol-
lowing settings: fill level 10, duty cycle 15, PIP 140, and
cycles/burst 200. In terms of time, we sonicated 20-min
pulses to test the optimal time to generate chromatin
size ~ 300–2000 bp. The lysates were spun down at 16,
000g for 10 min. Supernatants were flash frozen and
stored at − 80 °C if necessary.
For PIRCh-seq library construction, chromatin was

thawed and 10 μl was taken as input. Two hundred mi-
croliters was aliquoted per reaction, and 400 μl dilution
buffer was added to each reaction. H3 or a specific his-
tone modification antibody was then added (dilution
buffer: 0.01% SDS, 1.1% Triton X 100, 1.2 mM EDTA,
16.7 mM Tris 7.0, 167 mM NaCl, 1 mM PMSF, 0.1 U/μl
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Superase-in (Ambion), 1× Proteinase inhibitor (Roche)).
The reaction was shaken end to end at 4 °C overnight.
Fifty microliters of Protein A dynabeads was used per
5 μg antibody IP. Beads were washed with 5 times the
original volume of dilution buffer 4 times. Notice that it
is important not to exceed 200 μl original volume of
beads per tube. During the last wash, beads were ali-
quoted to 1 tube per reaction. The buffer was aspirated,
and 200 μl of the IP sample was used to resuspend and
transfer beads to the IP sample. The reaction was shaken
end to end at room temperature for 2 h. The beads were
then washed with 1 ml wash buffer 4 times and resus-
pended in 50 μl IP elution buffer (1% SDS, 50 mM
NaHCO3). The reaction was then vortexed at setting 1
for 15 min. The supernatant was then transferred to a
fresh tube, and the bead elution was repeated. The
supernatant was combined for a total of 100 μl. Five mi-
croliters of 3M NaOAc was immediately added to
neutralize pH. Ten microliter TurboDnase buffer and
1 μl TurboDnase (Ambion) were added, and the reaction
was incubated at 37 °C for 30 min. Three microliters of
500 mM EDTA was added to eliminate divalent ions.
Five microliters of Proteinase K (Ambion) was added,
and the reaction was incubated at 50 °C for 45 min.
To make our sequencing libraries, we extracted RNA

using Trizol/chloroform and precipitated the RNA with an
equal volume of isopropanol. RNA pellet was washed in 1
ml 70% EtOH, and pellets were resuspended in 10 μl H2O.
One microliter of TurboDnase buffer was added, followed
by 1 μl TurboDnase, and the reaction at 37 °C for 30min.
1.2 μl of TurboDnase inactivating reagents were added. The
reaction was vortexed for 3min and spun down. The 10-μl
supernatant was heated at 75 °C for 10min to kill DNase.
The reaction was purified using a Nugen Ovation v2 kit
and eluted in 5 μl for library preparation.

ChIRP-seq library preparation
To determine the genome-wide localization of lnc-Nr2f11,
we followed protocols previously described [33]. ChIRP was
performed using biotinylated probes designed against
mouse lnc-Nr2f1 using the ChIRP probes designer (Bio-
search Technologies). Independent even and odd probe
pools were used to ensure lncRNA-specific retrieval as pro-
tocols previously described [25]. “Even” and “odd” sets of
probes shared no overlapping sequences, as we performed
two independent ChIRP-seq experiments with these two
sets of probes separately. Two sets of data were then com-
bined for downstream analysis (see below). Mouse NPC
samples are crosslinked in 3% formaldehyde. RNase pre-
treated samples are served as negative controls for probe-
DNA hybridization. ChIRP libraries are constructed using
the NEBNext DNA library preparation kit (New England
Biolabs). Sequencing libraries were barcoded using TruSeq

adapters and sequenced on HiSeq or NextSeq instruments
(Illumina).

Experimental validation of antibody specificity after
glutaraldehyde crosslinking using modified
mononucleosomes with barcodes
To ensure that chemical crosslinking with glutaraldehyde
did not affect antibody specificity, we followed previous
study to test antibody specificity using SNAP-ChIP [26].
During IP pulldown, 15 μl of recombinant nucleosomes
(SNAP-ChIP, EpiCypher, 19-1001) was fixed with fresh 1%
glutaraldehyde. One percent glutaraldehyde was prepared
on the same day in room temperature PBS from 25% stock.
Fixation was performed for 10min at room temperature
with gentle shaking. The reaction was then quenched with
1/10 of the original reaction volume of 2.5M glycine. Tubes
were then inverted several times and incubated for 5min at
room temperature with gentle shaking.
Five hundred microliters of fixed chromatin was then

added to each tube and pipetted up and down several
times to mix well. Ten microliters of nucleosomes mixed
with chromatin was taken out of each tube to be used as
input during the qPCR. One tablet of Roche complete
protease inhibitor was dissolved (Roche, 11697498001) in
50ml of DI water to obtain a working solution of 50× pro-
tease inhibitor cocktail. Sixty microliters of 50× protease
inhibitor was added to 3ml of blank dilution buffer (0.01%
SDS, 1.1% Triton X100, 1.2 mM EDTA, 16.7mM Tris pH
7.0, 167mM NaCl). One milliliter of dilution buffer with
protease inhibitor was then added to each reaction. Five
micrograms of appropriate detection antibody for IP pull-
down was added to 300 μl of chromatin mixed with cross-
linked nucleosomes for each condition. Samples were
then incubated at 4 °C overnight with end-to-end shaking.
IP product was eluted as specified during PIRCH library

construction. DNA of interest was purified using a Zymo
DNA Clean and Concentrator-5 kit (Zymo Research,
D4013). The qPCR reaction was performed using Roche’s
LightCycler and Brilliant II SYBR® Green QRT-PCR Master
Mix (Agilent). We analyzed enrichment for target histone
modifications by amplifying unique DNA barcodes at the
3′ end, using primer sequences provided by EpiCypher.

RT-qPCR
For qRT-PCR analysis, we used Roche’s LightCycler and
Brilliant II SYBR® Green QRT-PCR Master Mix (Agilent).

PIRCh-seq data alignment
Raw reads were uniquely mapped to mm9/hg19 using
Tophat with default parameters [70]. Samtools and Bed-
Tools were used to transform the mapped bam file into
bedGraph and bigwig files for visualization on the UCSC
genome browser [71, 72]. RPKM and raw read count for
each gene were calculated by self-designed scripts with
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ensemble annotation, Homo_sapiens.GRCh37.75.gtf for
human and Mus_musculus.NCBIM37.67.gtf, and a num-
ber of previous publications for mouse samples, respect-
ively [73]. The PIRCh-seq read counts in each sample
were then normalized as if the total sequencing depth
was 10 million.

Calculate exon/intron ratio to estimate nascent
transcripts
To compare the exon/intron ratios between the PIRCh-
seq profiles and other chromatin-associated RNA detec-
tion technologies, we aligned raw reads to the same hg19
genome index with Tophat and calculated the reads
mapped to intron/exon with ensemble annotation gtf file
as described above [70]. For the average read counts
around introns, three steps were taken: (1) scaled every
intron based on its length, and extended 1 exon length
up- and downstream of the selected intron; (2) divided the
entire region to 300 windows, and calculate the average
number of read counts mapped in each window and then
take log2 to scale down the values to avoid interferences
from the outliers; and (3) take average for all the windows
among all introns. To estimate the correlation between
the histone modification-specific PIRCh-seq profile with
its corresponding ChIP-seq signals, we obtained ChIP-seq
profiles of each histone modification in mESC from EN-
CODE. And then, for each expressed gene in mESC, the
histone modification ChIP-seq signal over input on the
gene exon were calculated as the ChIP signal for that
gene, and were compared with the corresponding PRICh-
seq enrichment score with the same histone modification,
and our results indicated that there was no significant cor-
relation with these two sets of signals.

Gene set enrichment analysis
GSEA software was downloaded from (http://software.
broadinstitute.org/gsea/index.jsp) at the Broad Institute
website and was utilized to perform the significant differ-
ential chromatin enrichment from PIRCh-seq against
ncRNA versus coding genes [42]. The ncRNA set con-
sisted of the annotated snoRNA, snRNA, rRNA, lncRNA,
miRNA, and miscRNA.

Data normalization and identification of the chromatin-
enriched RNAs
The chromatin-enriched ncRNAs were identified through
the limma algorism in R [41]. First, a data matrix was ob-
tained, where each raw read was a gene and each column
a sample, and the element of the matrix represented the
number of raw reads from PIRCh-seq experiments and in-
puts. To filter low-express gene, “filterByExpr” method in
edgeR [40] was applied as limma algorism recommend.
The filtered values in this matrix were then normalized by
the limma-voom method in R. After that, differential

analysis was performed using the limma gene-wise linear
model for each pair of PIRCh replicates over inputs. Non-
coding RNAs with P value< 0.05 and log2 fold change over
inputs > 0 were defined as chromatin enriched. We ob-
tained 258 chromatin-enriched ncRNAs in mouse V6.5
cell line, 200 in MEF, and 110 in NPC. Variation score of
each gene was defined as the standard deviations of the
fold change among all histone modification-specific
PIRCh-seq profiles. The Pearson correlation coefficients
between each two PIRCh-seq experiments were calcu-
lated, and unsupervised clustering of the correlation
matrix was performed in cluster.

Computational validation of the PIRCh-seq-enriched
ncRNAs
In order to validate the PIRCh-enriched candidates by
similar methods, we examined 96 published chromatin-
association datasets from ChIRP/CHART/RAP/GRID-
seq experiments collected by the LnChrom database
[43]. We found a total of 23 expressed lncRNAs in the
LnChrom database, including Xist, Firre, Rmrp, and
Tug1, and all of them were positively enriched in our
PIRCh experiment and 14 of which were significant with
P value< 0.05, suggesting the high sensitivity of the
PIRCh approach in identifying chromatin-associated
lncRNAs. Furthermore, we obtained the genomic bind-
ing sites (peaks) of 23 lncRNAs from the aforementioned
experiments, and overlapped them with the histone
ChIP-seq peaks [37] and got a ratio of the overlap for
each lncRNA. We then calculated the Spearman correl-
ation coefficients of these ratios with their correspond-
ing lncRNA’s PIRCh-seq enrichment scores in the same
cell line (normalized by the total number of different
ChIP-seq peaks), and found that these correlations were
significantly higher than random permutations. Peak
calling was performed by MACS2 [74] with FDR < 0.05.

The chromatin association states of the enriched ncRNAs
To cluster chromatin-enriched ncRNAs in distinct groups
for functional prediction, we performed t-SNE and K-
means clustering on the PIRCh enrichment score matrix
with the chromatin-associated ncRNAs. The proper K
number (K = 6) was determined by silhouette score [49].

Nearby coding gene expression comparison
To further evaluate the functional prediction for
chromatin-enriched ncRNAs, we first grouped chromatin-
enriched ncRNAs by functional classification and then ob-
tained lists of the nearby (± 100 Kb) coding genes. We
then calculated the gene expressions of these coding genes
and represented them in box plots. Similarly, we obtained
a different list of nearby coding genes if the chromatin-
enriched ncRNAs were classified based on their chromatin
enrichment scores on each histone modification. The
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significance between each group was estimated by two-
tailed Welch’s T test.

lnc-Nr2f1 ChIPR-seq analysis
To further validate the PIRCh-seq candidates, we per-
formed ChIRP-seq on one of the H3K4me3-modified
PIRCh-seq-enriched lncRNAs named lnc-Nr2f1. Experi-
mental methods were mentioned above, where independ-
ent “even” and “odd” probe sets were applied. LncRNA
lnc-Nr2f1 ChIRP-seq data were then analyzed by applying
a previously published pipeline [25], where the read align-
ment was performed in bowtie2 and peak calling in
MACS2. Signals from even and odd ChIRP-seq profiles
were then merged to reduce false positive caused by
probes. We confirmed that lnc-Nr2f1-associated genomic
regions were indeed enriched with H3K4me3 but no other
modifications in NPCs, where the NPC ChIP-seq data was
obtained from GSE117289, indicating the high specificity
of our PIRCh-seq approach.

Allelic-specific enrichment analysis in NPC
We first built the CAST/EiJ and 129S1/SvImJ reference
genome. The vcf files containing the SNPs in the CAST
and 129S1 strains were downloaded from the dbSNP data-
base with the mm9 assembly [75]. Their corresponding
genome fasta file was made by GATK toolkit FastaAlter-
nateReferenceMaker and SelectVariants tools [76]. After
that, the inputs and PIRCh-seq data in were re-aligned
against the CAST and 129S1 indexes by TopHat2 with 0
mismatch (parameter -N 0) to improve the specificity
[70]. The allele-specific alignment files were then con-
verted to the bedGraph and bigWigs format using BED-
tools. For each gene, its allele-specific expression and
enrichment analysis was performed for every SNP on the
list, and estimated the significance between CAST and
129S1 through the Mann-Whitney-Wilcoxon test, and P
value < 0.05 was defined as significant.

Enriched peak calling from PIRCh-seq profiles
To further investigate the underlying mechanism of RNA-
chromatin association, we performed peak calling on
PIRCh-seq profiles to identify the bases on each enriched
RNA that were mostly affiliated with histone proteins. We
first merged data from two replicates of each gene to
minimize the experimental deviation bias, and smoothed
the normalized read counts on each base through a 5-bp
sliding window, along with a 2-bp step size. Peak calling
was performed on the smoothed signal with a homemade
script. We defined a peak in the local maximum that is
fivefold or more amplified relative to the median read
counts of the transcript. Next, we applied a bootstrap
method by randomly sampling 1000 times with reads from
the transcripts, and then estimated the P value of each
peak as the percentage of cases that were more enriched

than observed. Finally, we calculated the relative fold
change of each peak with respect to the input control. Sig-
nificant peaks were filtered based on fold change and P
value. Finally, RNA structural and modification informa-
tion was integrated with PIRCh-seq peaks for downstream
analysis.

icSHAPE analysis and structural prediction using RNAfold
To estimate the structure information around PIRCh
peak, we integrate mouse V6.5 icSHAPE data from pre-
vious paper [61, 65]. Each transcript’s icSHAPE score
was calculated by the original icSHAPE pipeline with de-
fault parameter. We used homemade script to count
icSHAPE score around PIRCh peak (± 200 bp) among all
transcripts, and the significance between histone-
modification PIRCh peak and random background re-
gion was estimated by two-tailed Welch’s T test. In
terms of Gas5 in NPC, the structure information of
129S1 allele was represented by V6.5 icSHAPE data,
since they have the same sequence. Structure prediction
of 129S1 allele and CAST allele was performed by RNA-
fold web server with default parameter [62]. For 129S1
allele, the higher icSHAPE score at peak region indicates
single strand structure, which is similar to the structure
prediction from RNAfold. Furthermore, structure pre-
diction of CAST allele of Gas5 in NPC shows that riboS-
nitches around PIRCh peak might be the cause of the
allele-specific enrichment of Gas5s in NPC.

Statistics
For data presented in Fig. 1b (RT-PCR), P values were cal-
culated via the Mann-Whitney-Wilcoxon test in Python.
For data presented in Fig. 2d and Additional file 1: Figure
S6B (GSEA), enrichment score, P values, and FDR were
calculated in GSEA. For data presented in Additional file 1:
Figure S2G, binomial P values were calculated by GREAT.
For all T test presented in this paper, including Fig. 2e, f, i;
Fig. 3f; Additional file 1: Figure S5C; and Fig. 5d–g, P
values were calculated via two-tailed Welch’s T test in Py-
thon. For data presented in Fig. 4f, P values were calcu-
lated via the chi-square test.
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